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ABSTRACT: Using an online or inline capillary rheometer as a tool of rheology mea-
surement would come into the ends pressure drop problem. In order to derive the actual
pressure drop of the capillary, another capillary with the same diameter and different
length is needed (according to Bagley correction) but would result in a more complex
mechanism. In this study, a neural network approach is proposed to estimate the ends
pressure drops in an online capillary rheometer. The back propagation learning algo-
rithm is used for network training. The shear rate, the die pressure, and the ratio of
diameters of the reservoir to the capillary are taken as the neural network inputs, and
the ends pressure drop is taken as the output. Two hundred of training sets that are
made from a laboratory capillary rheometer are used for network training. The trained
neural network can be consequently applied to real-time assessment of the ends
pressure drops in the online capillary rheometer. It is concluded that using the pro-
posed method for calculating the ends pressure drop is effective. Besides, the simplicity
of the mechanism provides good portability for both online polymer characterization
and quality control in processing. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73:

2183-2186, 1999
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INTRODUCTION

In the polymer processing industries, more and
more stringent requirements on the product qual-
ity control are demanded. Lots of efforts have
focused on the improvement of stability of the
processing machines, instrumentation, and take-
up devices. Since the relative advanced technol-
ogy have achieved an acceptable extent, the in-
tent to lower down the production costs and off-
standard products turns to how to properly
control the polymeric properties under process-
ing. An efficient control should always be based
on a precise measurement. In most forming pro-
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cesses (like extrusion and injection), polymers are
processed under the molten state. An online rhe-
ometer to measure the rheological properties,
which can be used as the index of the end-product
quality, would be required.

Using a precise online rheometer to measure
the rheological properties of a polymer can also
determine in real-time the structure (like molec-
ular weight and molecular weight distribution) of
a polymer under processing. Besides, online mea-
surements provide more reliable data than that of
offline measurements.! It’s because the rheologi-
cal properties of polymers are dependent on shear
history and heating history. Online measurement
would still provide much more savings in time
and manpower than offline measurement.?

The online capillary rheometer,® in which the
polymeric melt is continuously forced through a cir-
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Figure 1 Neural network structure used in this article.

cular pipe in processing, is the most popular rheo-
meter due to its compactness and simple construc-
tion. Rheological properties can be determined by
measuring its pressure drops and flow rates. Goft-
tert* developed an online rheometer called a bypass
rheograph that has been using in laboratories and
industries for a long time, in which the pressure
transducer is installed in the reservoir in front of
the capillary; therefore the ends pressure drop prob-
lem arises. The solution to this problem, undoubt-
edly, is to use the Bagley correction.” In order to
derive the actual pressure drop of the capillary,
another capillary with the same diameter and dif-
ferent length is needed, consequently resulting in a
more complex mechanism.

In this work, a neural network approach is
proposed to calculate the ends pressure drop in an
online capillary rheometer. The neural network is
designed using the back propagation learning al-
gorithm®” with the shear rate, the die pressure,
and the diameter ratio of the reservoir and the
capillary taken as the neural network inputs and
the ends pressure drop taken as the output. Two
hundred training sets that are made from a lab-
oratory capillary rheometer are used for network
training. The trained neural network is applica-
ble to real-time assessment of the ends pressure
drop of a single capillary rheometer. It is con-
cluded, according to the experimental results,
that the use of proposed method for calculating
online the ends pressure drop is efficient. Besides,
the simplicity of the mechanism provides good

portability for both online polymer characteriza-
tion and quality control in processing.

SELECTION OF NEURAL NETWORK INPUT
VARIABLES

According to Bagley correction,® the ends pres-
sure drop can be determined from the intercept of
the straight line, which is at a fixed shear rate, in
the plot of pressure drop versus length-to-diame-
ter ratio. A different shear rate would result in a
different ends pressure drop in a fixed geometry
die. Thus, the shear rate and the capillary pres-
sure drop are considered as two of the neural
network inputs. The effects of the capillary geom-
etry (including the diameters ratio of the reser-
voir to the capillary D,/D, and the entry angle of
the capillary) on the ends pressure drop should
also be considered. In this study, a fixed entry
angle with 90° was used to simplify the neural
network structure. Hence, the inputs used in the
network are concluded as the shear rate, the cap-
illary pressure drop, the diameter ratio of the
reservoir, and the capillary.

NEURAL NETWORK STRUCTURE

The neural network structure is designed, as is
shown in Figure 1. One hidden layer is introduced
between the input and output layers to include
the mutual effects between the input variables.
The back propagation algorithm is used for net-



work learning. The well-known back propagation
algorithm is a kind of supervised learning net-
work, in which the gradient descent technique is
employed to minimize the cost function of the
mean square difference between the desired and
actual neural network output. The network
weight is adjusted by shifting itself towards a
convergent result. The outputs can be inferred by
using the network structure with measured in-
puts in practical applications. It is suitable for
prediction, as is used for estimating the ends
pressure drop in this work.

Four neurons in the hidden layer are selected
by trial and error. The output of the jth neuron in
layer n with respect to n = 2 for the hidden layer
and n = 3 for the output layer is calculated by the
sigmoid function, as shown in eq. (1).

1
A]n = f(netj’f) = T (1)

n
—net”
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where net? is the summation function of the jth
neuron in layer n and can be expressed as

net! = > (WA ) — ¢, n=2,3 (2)

in which A?" ! is the ith input of the network
(which is given) if n = 2.

W7 b" is the weight between the ith neuron in
layer n — 1 and the jth neuron in layer n, and 6
is the threshold of the jth neuron in layer n. In
the learning procedure, the initial weights and
the initial thresholds are firstly randomized and
then are adjusted to new ones in terms of eqs. (3)
and (4), respectively, in every iterative cycle.

Wit = Wistn + AWl n =238 (3)
0r=0"+ A0, n=2,3 (4)

where AW}~ L and A 07 represent adjustments in
W;‘,}l’” and in 6}, respectively, and can be ex-
pressed in terms of eqgs. (5) and (6).

AW = narAr! (5)
A = —nd) 6)

where &7 is the error signal term of jth neuron in
layer n that is expressed by eq. (7) for the hidden
layer and eq. (8) for the output layer.
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Table I Three Sets of Test Geometry in the
Training Experiments

Measurement I II 11T
Length-to-diameter ratio of 16 16 4
capillary
Capillary length (mm) 16 25 2
Capillary diameter (mm) 1 1.5 0.5
Capillary entry angle (degree) 90 90 90
Diameter ratio of the 15 10 30

reservoir and the capillary

S =AN1—-AY > Wrisrt i n =2  (7)

8 = AX1 — AN(T; — Al), n = 3 8)

where T} is the output training data of the jth
neuron in the output layer. n is the learning
rate used to control the degree of the minimized
error function; in this case, a value of 0.7 was
selected. The procedure of deriving new weights
and thresholds would go on until the convergent
consequence is drawn. Finally, the convergent
solutions are used for recall.

MAKING TRAINING SETS

In order to produce the training sets for training
purposes, a series of experiments were imple-
mented in a laboratory capillary rheometer. Two
hundred data result from rheological tests of low-
density polyethylene (LDPE) at 20 temperatures
from 160 to 200°C with three different sets of
D,/D, were used. The test geometry used for
three different sets of D,/D, are shown in Table 1.
Part of the data tested in Rosand capillary rheo-
meter is listed in Tables II and III that provide for
network training.

RESULTS

The neural network program was written by
using Turbo C. An IBM compatible computer
with an Intel 80586/166 MHz processor was
used.

One hundred sets of test data, which differ
from the training set, were made for verification.
Comparisons of the prediction results and the
actual results are shown in Figure 2. A nearly
linear relation can be seen in the plots. The max-
imal error is 10.9%. Though it is acceptable, it can
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Table II Experimental Data of LDPE at 180°C
Used for Training Purposes

Shear Rate Die Pressure Ends Pressure

(1/s) Drop (MPa) Drop (MPa)
4599 20.2 3.58
3642 19.2 3.42
2697 17.0 3.10
2230 16.0 2.73
1768 14.8 2.57
1311 13.1 2.26
860.3 11.3 1.94
638.4 10.2 1.62
419.5 8.55 1.36
333.1 8.13 1.23
247.4 7.38 1.01
205.0 6.51 0.92
162.8 6.12 0.83
121.1 4.95 0.63
79.7 4.15 0.39
39.1 3.04 0.22

Test geometry: length-to-diameter ratio, 16/1 (mm/mm);
entry angle, 90°.

also be improved by increasing the training sets
or by modifying the network structure in the prac-
tical applications.

Table III Experimental Data of LDPE at 170°C
Used for Training Purposes

Die Pressure Ends Pressure

Shear Rate (1/s) Drop (MPa) Drop (MPa)
4816 22.2 4.31
3792 21.4 3.94
2790 19.1 3.47
2298 174 3.21
1813 16.3 2.89
1337 14.7 2.61

871.4 12.9 2.20
643.7 114 1.96
420.6 9.70 1.61
333.0 8.80 1.46
246.5 8.43 1.34
203.8 7.62 1.13
161.5 6.94 1.03
119.7 6.01 0.88

78.6 4.77 0.73

38.3 3.50 0.42

Test geometry: length-to-diameter ratio, 16/1 (mm/mm);
entry angle, 90°.
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Figure 2 Predicted ends pressure drop versus real
ends pressure drop.

CONCLUSIONS

In this work, a neural network approach for on-
line calculating the ends pressure drops in a sin-
gle capillary is proposed. It is concluded, accord-
ing to the experimental results, that using the
proposed method for calculating online the ends
pressure drop is efficient. It can be used further to
calculate the true shear stress; hence, the true
viscosity for online or inline rheology assessment
can be accomplished. Besides, a simple and por-
table sensor is conducted for online or inline melt
characterization.
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